TSTP Solution File: GEG002^1 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : GEG002^1 : TPTP v8.1.2. Released v4.1.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n004.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 22:39:59 EDT 2023

% Result   : Theorem 36.98s 37.20s
% Output   : Proof 36.98s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : GEG002^1 : TPTP v8.1.2. Released v4.1.0.
% 0.00/0.13  % Command    : do_cvc5 %s %d
% 0.14/0.34  % Computer : n004.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit   : 300
% 0.14/0.34  % WCLimit    : 300
% 0.14/0.34  % DateTime   : Mon Aug 28 00:54:52 EDT 2023
% 0.14/0.34  % CPUTime    : 
% 0.20/0.47  %----Proving TH0
% 0.20/0.48  %------------------------------------------------------------------------------
% 0.20/0.48  % File     : GEG002^1 : TPTP v8.1.2. Released v4.1.0.
% 0.20/0.48  % Domain   : Geography
% 0.20/0.48  % Problem  : Catalunya and Paris, and Spain and Paris, are disconnected
% 0.20/0.48  % Version  : [RCC92] axioms.
% 0.20/0.48  % English  : The assumptions express that Catalunya is a border region of 
% 0.20/0.48  %            Spain, Spain and France are two different countries sharing a 
% 0.20/0.48  %            common border, and Paris is a proper part of France. The 
% 0.20/0.48  %            conjecture is that Catalunya and Paris are disconnected as well 
% 0.20/0.48  %            as Spain and Paris.
% 0.20/0.48  
% 0.20/0.48  % Refs     : [RCC92] Randell et al. (1992), A Spatial Logic Based on Region
% 0.20/0.48  %          : [Ben10a] Benzmueller (2010), Email to Geoff Sutcliffe
% 0.20/0.48  %          : [Ben10b] Benzmueller (2010), Simple Type Theory as a Framework
% 0.20/0.48  % Source   : [Ben10a]
% 0.20/0.48  % Names    : Problem 61 [Ben10b]
% 0.20/0.48  
% 0.20/0.48  % Status   : Theorem
% 0.20/0.48  % Rating   : 0.31 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v6.1.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0
% 0.20/0.48  % Syntax   : Number of formulae    :   30 (  13 unt;  15 typ;   9 def)
% 0.20/0.48  %            Number of atoms       :   46 (   9 equ;   0 cnn)
% 0.20/0.48  %            Maximal formula atoms :    2 (   3 avg)
% 0.20/0.48  %            Number of connectives :   75 (   6   ~;   0   |;  11   &;  56   @)
% 0.20/0.48  %                                         (   0 <=>;   2  =>;   0  <=;   0 <~>)
% 0.20/0.48  %            Maximal formula depth :    6 (   2 avg)
% 0.20/0.48  %            Number of types       :    2 (   1 usr)
% 0.20/0.48  %            Number of type conns  :   20 (  20   >;   0   *;   0   +;   0  <<)
% 0.20/0.48  %            Number of symbols     :   19 (  18 usr;   8 con; 0-2 aty)
% 0.20/0.48  %            Number of variables   :   25 (  18   ^;   4   !;   3   ?;  25   :)
% 0.20/0.48  % SPC      : TH0_THM_EQU_NAR
% 0.20/0.48  
% 0.20/0.48  % Comments : 
% 0.20/0.48  %------------------------------------------------------------------------------
% 0.20/0.48  %----Include Region Connection Calculus axioms
% 0.20/0.48  %------------------------------------------------------------------------------
% 0.20/0.48  thf(reg_type,type,
% 0.20/0.48      reg: $tType ).
% 0.20/0.48  
% 0.20/0.48  thf(c_type,type,
% 0.20/0.48      c: reg > reg > $o ).
% 0.20/0.48  
% 0.20/0.48  thf(dc_type,type,
% 0.20/0.48      dc: reg > reg > $o ).
% 0.20/0.48  
% 0.20/0.48  thf(p_type,type,
% 0.20/0.48      p: reg > reg > $o ).
% 0.20/0.48  
% 0.20/0.48  thf(eq_type,type,
% 0.20/0.48      eq: reg > reg > $o ).
% 0.20/0.48  
% 0.20/0.48  thf(o_type,type,
% 0.20/0.48      o: reg > reg > $o ).
% 0.20/0.48  
% 0.20/0.48  thf(po_type,type,
% 0.20/0.48      po: reg > reg > $o ).
% 0.20/0.48  
% 0.20/0.48  thf(ec_type,type,
% 0.20/0.48      ec: reg > reg > $o ).
% 0.20/0.48  
% 0.20/0.48  thf(pp_type,type,
% 0.20/0.48      pp: reg > reg > $o ).
% 0.20/0.48  
% 0.20/0.48  thf(tpp_type,type,
% 0.20/0.48      tpp: reg > reg > $o ).
% 0.20/0.48  
% 0.20/0.48  thf(ntpp_type,type,
% 0.20/0.48      ntpp: reg > reg > $o ).
% 0.20/0.48  
% 0.20/0.48  thf(c_reflexive,axiom,
% 0.20/0.48      ! [X: reg] : ( c @ X @ X ) ).
% 0.20/0.48  
% 0.20/0.48  thf(c_symmetric,axiom,
% 0.20/0.48      ! [X: reg,Y: reg] :
% 0.20/0.48        ( ( c @ X @ Y )
% 0.20/0.48       => ( c @ Y @ X ) ) ).
% 0.20/0.48  
% 0.20/0.48  thf(dc,definition,
% 0.20/0.48      ( dc
% 0.20/0.48      = ( ^ [X: reg,Y: reg] :
% 0.20/0.48            ~ ( c @ X @ Y ) ) ) ).
% 0.20/0.48  
% 0.20/0.48  thf(p,definition,
% 0.20/0.48      ( p
% 0.20/0.48      = ( ^ [X: reg,Y: reg] :
% 0.20/0.48          ! [Z: reg] :
% 0.20/0.48            ( ( c @ Z @ X )
% 0.20/0.48           => ( c @ Z @ Y ) ) ) ) ).
% 0.20/0.48  
% 0.20/0.48  thf(eq,definition,
% 0.20/0.48      ( eq
% 0.20/0.48      = ( ^ [X: reg,Y: reg] :
% 0.20/0.48            ( ( p @ X @ Y )
% 0.20/0.48            & ( p @ Y @ X ) ) ) ) ).
% 0.20/0.48  
% 0.20/0.48  thf(o,definition,
% 0.20/0.48      ( o
% 0.20/0.48      = ( ^ [X: reg,Y: reg] :
% 0.20/0.48          ? [Z: reg] :
% 0.20/0.48            ( ( p @ Z @ X )
% 0.20/0.48            & ( p @ Z @ Y ) ) ) ) ).
% 0.20/0.48  
% 0.20/0.48  thf(po,definition,
% 0.20/0.48      ( po
% 0.20/0.48      = ( ^ [X: reg,Y: reg] :
% 0.20/0.48            ( ( o @ X @ Y )
% 0.20/0.48            & ~ ( p @ X @ Y )
% 0.20/0.48            & ~ ( p @ Y @ X ) ) ) ) ).
% 0.20/0.48  
% 0.20/0.48  thf(ec,definition,
% 0.20/0.48      ( ec
% 0.20/0.48      = ( ^ [X: reg,Y: reg] :
% 0.20/0.48            ( ( c @ X @ Y )
% 0.20/0.48            & ~ ( o @ X @ Y ) ) ) ) ).
% 0.20/0.48  
% 0.20/0.48  thf(pp,definition,
% 0.20/0.48      ( pp
% 0.20/0.48      = ( ^ [X: reg,Y: reg] :
% 0.20/0.48            ( ( p @ X @ Y )
% 0.20/0.48            & ~ ( p @ Y @ X ) ) ) ) ).
% 0.20/0.48  
% 0.20/0.48  thf(tpp,definition,
% 0.20/0.48      ( tpp
% 0.20/0.48      = ( ^ [X: reg,Y: reg] :
% 0.20/0.48            ( ( pp @ X @ Y )
% 0.20/0.48            & ? [Z: reg] :
% 0.20/0.48                ( ( ec @ Z @ X )
% 0.20/0.48                & ( ec @ Z @ Y ) ) ) ) ) ).
% 0.20/0.48  
% 0.20/0.48  thf(ntpp,definition,
% 0.20/0.48      ( ntpp
% 0.20/0.48      = ( ^ [X: reg,Y: reg] :
% 0.20/0.48            ( ( pp @ X @ Y )
% 0.20/0.48            & ~ ? [Z: reg] :
% 0.20/0.48                  ( ( ec @ Z @ X )
% 0.20/0.48                  & ( ec @ Z @ Y ) ) ) ) ) ).
% 0.20/0.48  
% 0.20/0.48  %------------------------------------------------------------------------------
% 0.20/0.48  %------------------------------------------------------------------------------
% 0.20/0.48  thf(catalunya,type,
% 36.98/37.20      catalunya: reg ).
% 36.98/37.20  
% 36.98/37.20  thf(france,type,
% 36.98/37.20      france: reg ).
% 36.98/37.20  
% 36.98/37.20  thf(spain,type,
% 36.98/37.20      spain: reg ).
% 36.98/37.20  
% 36.98/37.20  thf(paris,type,
% 36.98/37.20      paris: reg ).
% 36.98/37.20  
% 36.98/37.20  thf(ax1,axiom,
% 36.98/37.20      tpp @ catalunya @ spain ).
% 36.98/37.20  
% 36.98/37.20  thf(ax2,axiom,
% 36.98/37.20      ec @ spain @ france ).
% 36.98/37.20  
% 36.98/37.20  thf(ax3,axiom,
% 36.98/37.20      ntpp @ paris @ france ).
% 36.98/37.20  
% 36.98/37.20  thf(con,conjecture,
% 36.98/37.20      ( ( dc @ catalunya @ paris )
% 36.98/37.20      & ( dc @ spain @ paris ) ) ).
% 36.98/37.20  
% 36.98/37.20  %------------------------------------------------------------------------------
% 36.98/37.20  ------- convert to smt2 : /export/starexec/sandbox/tmp/tmp.cGUoGD3b1w/cvc5---1.0.5_1262.p...
% 36.98/37.20  (declare-sort $$unsorted 0)
% 36.98/37.20  (declare-sort tptp.reg 0)
% 36.98/37.20  (declare-fun tptp.c (tptp.reg tptp.reg) Bool)
% 36.98/37.20  (declare-fun tptp.dc (tptp.reg tptp.reg) Bool)
% 36.98/37.20  (declare-fun tptp.p (tptp.reg tptp.reg) Bool)
% 36.98/37.20  (declare-fun tptp.eq (tptp.reg tptp.reg) Bool)
% 36.98/37.20  (declare-fun tptp.o (tptp.reg tptp.reg) Bool)
% 36.98/37.20  (declare-fun tptp.po (tptp.reg tptp.reg) Bool)
% 36.98/37.20  (declare-fun tptp.ec (tptp.reg tptp.reg) Bool)
% 36.98/37.20  (declare-fun tptp.pp (tptp.reg tptp.reg) Bool)
% 36.98/37.20  (declare-fun tptp.tpp (tptp.reg tptp.reg) Bool)
% 36.98/37.20  (declare-fun tptp.ntpp (tptp.reg tptp.reg) Bool)
% 36.98/37.20  (assert (forall ((X tptp.reg)) (@ (@ tptp.c X) X)))
% 36.98/37.20  (assert (forall ((X tptp.reg) (Y tptp.reg)) (=> (@ (@ tptp.c X) Y) (@ (@ tptp.c Y) X))))
% 36.98/37.20  (assert (= tptp.dc (lambda ((X tptp.reg) (Y tptp.reg)) (not (@ (@ tptp.c X) Y)))))
% 36.98/37.20  (assert (= tptp.p (lambda ((X tptp.reg) (Y tptp.reg)) (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (=> (@ _let_1 X) (@ _let_1 Y)))))))
% 36.98/37.20  (assert (= tptp.eq (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.p X) Y) (@ (@ tptp.p Y) X)))))
% 36.98/37.20  (assert (= tptp.o (lambda ((X tptp.reg) (Y tptp.reg)) (exists ((Z tptp.reg)) (let ((_let_1 (@ tptp.p Z))) (and (@ _let_1 X) (@ _let_1 Y)))))))
% 36.98/37.20  (assert (= tptp.po (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.o X) Y) (not (@ (@ tptp.p X) Y)) (not (@ (@ tptp.p Y) X))))))
% 36.98/37.20  (assert (= tptp.ec (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.c X) Y) (not (@ (@ tptp.o X) Y))))))
% 36.98/37.20  (assert (= tptp.pp (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.p X) Y) (not (@ (@ tptp.p Y) X))))))
% 36.98/37.20  (assert (= tptp.tpp (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.pp X) Y) (exists ((Z tptp.reg)) (let ((_let_1 (@ tptp.ec Z))) (and (@ _let_1 X) (@ _let_1 Y))))))))
% 36.98/37.20  (assert (= tptp.ntpp (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.pp X) Y) (not (exists ((Z tptp.reg)) (let ((_let_1 (@ tptp.ec Z))) (and (@ _let_1 X) (@ _let_1 Y)))))))))
% 36.98/37.20  (declare-fun tptp.catalunya () tptp.reg)
% 36.98/37.20  (declare-fun tptp.france () tptp.reg)
% 36.98/37.20  (declare-fun tptp.spain () tptp.reg)
% 36.98/37.20  (declare-fun tptp.paris () tptp.reg)
% 36.98/37.20  (assert (@ (@ tptp.tpp tptp.catalunya) tptp.spain))
% 36.98/37.20  (assert (@ (@ tptp.ec tptp.spain) tptp.france))
% 36.98/37.20  (assert (@ (@ tptp.ntpp tptp.paris) tptp.france))
% 36.98/37.20  (assert (not (and (@ (@ tptp.dc tptp.catalunya) tptp.paris) (@ (@ tptp.dc tptp.spain) tptp.paris))))
% 36.98/37.20  (set-info :filename cvc5---1.0.5_1262)
% 36.98/37.20  (check-sat-assuming ( true ))
% 36.98/37.20  ------- get file name : TPTP file name is GEG002^1
% 36.98/37.20  ------- cvc5-thf : /export/starexec/sandbox/solver/bin/cvc5---1.0.5_1262.smt2...
% 36.98/37.20  --- Run --ho-elim --full-saturate-quant at 10...
% 36.98/37.20  --- Run --ho-elim --no-e-matching --full-saturate-quant at 10...
% 36.98/37.20  --- Run --ho-elim --no-e-matching --enum-inst-sum --full-saturate-quant at 10...
% 36.98/37.20  --- Run --ho-elim --finite-model-find --uf-ss=no-minimal at 5...
% 36.98/37.20  --- Run --no-ho-matching --finite-model-find --uf-ss=no-minimal at 5...
% 36.98/37.20  % SZS status Theorem for GEG002^1
% 36.98/37.20  % SZS output start Proof for GEG002^1
% 36.98/37.20  (
% 36.98/37.20  (let ((_let_1 (not (and (@ (@ tptp.dc tptp.catalunya) tptp.paris) (@ (@ tptp.dc tptp.spain) tptp.paris))))) (let ((_let_2 (@ (@ tptp.ntpp tptp.paris) tptp.france))) (let ((_let_3 (@ (@ tptp.ec tptp.spain) tptp.france))) (let ((_let_4 (@ (@ tptp.tpp tptp.catalunya) tptp.spain))) (let ((_let_5 (= tptp.ntpp (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.pp X) Y) (not (exists ((Z tptp.reg)) (let ((_let_1 (@ tptp.ec Z))) (and (@ _let_1 X) (@ _let_1 Y)))))))))) (let ((_let_6 (= tptp.tpp (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.pp X) Y) (exists ((Z tptp.reg)) (let ((_let_1 (@ tptp.ec Z))) (and (@ _let_1 X) (@ _let_1 Y))))))))) (let ((_let_7 (= tptp.pp (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.p X) Y) (not (@ (@ tptp.p Y) X))))))) (let ((_let_8 (= tptp.ec (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.c X) Y) (not (@ (@ tptp.o X) Y))))))) (let ((_let_9 (= tptp.po (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.o X) Y) (not (@ (@ tptp.p X) Y)) (not (@ (@ tptp.p Y) X))))))) (let ((_let_10 (= tptp.o (lambda ((X tptp.reg) (Y tptp.reg)) (exists ((Z tptp.reg)) (let ((_let_1 (@ tptp.p Z))) (and (@ _let_1 X) (@ _let_1 Y)))))))) (let ((_let_11 (= tptp.eq (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.p X) Y) (@ (@ tptp.p Y) X)))))) (let ((_let_12 (= tptp.p (lambda ((X tptp.reg) (Y tptp.reg)) (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (=> (@ _let_1 X) (@ _let_1 Y)))))))) (let ((_let_13 (= tptp.dc (lambda ((X tptp.reg) (Y tptp.reg)) (not (@ (@ tptp.c X) Y)))))) (let ((_let_14 (forall ((X tptp.reg) (Y tptp.reg)) (=> (@ (@ tptp.c X) Y) (@ (@ tptp.c Y) X))))) (let ((_let_15 (tptp.c tptp.paris tptp.spain))) (let ((_let_16 (tptp.c tptp.paris tptp.catalunya))) (let ((_let_17 (not _let_16))) (let ((_let_18 (or _let_17 _let_15))) (let ((_let_19 (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 tptp.catalunya)) (@ _let_1 tptp.spain)))))) (let ((_let_20 (1))) (let ((_let_21 (ASSUME :args (_let_13)))) (let ((_let_22 (EQ_RESOLVE (ASSUME :args (_let_12)) (MACRO_SR_EQ_INTRO :args (_let_12 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_23 (EQ_RESOLVE (ASSUME :args (_let_11)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_22 _let_21) :args (_let_11 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_24 (EQ_RESOLVE (EQ_RESOLVE (ASSUME :args (_let_10)) (MACRO_SR_EQ_INTRO :args (_let_10 SB_DEFAULT SBA_FIXPOINT))) (MACRO_SR_EQ_INTRO (AND_INTRO _let_23 _let_22 _let_21) :args ((= tptp.o (lambda ((X tptp.reg) (Y tptp.reg)) (not (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.p Z))) (or (not (@ _let_1 X)) (not (@ _let_1 Y)))))))) SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_25 (EQ_RESOLVE (ASSUME :args (_let_9)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_24 _let_23 _let_22 _let_21) :args (_let_9 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_26 (EQ_RESOLVE (ASSUME :args (_let_8)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_25 _let_24 _let_23 _let_22 _let_21) :args (_let_8 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_27 (EQ_RESOLVE (ASSUME :args (_let_7)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_26 _let_25 _let_24 _let_23 _let_22 _let_21) :args (_let_7 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_28 (EQ_RESOLVE (EQ_RESOLVE (ASSUME :args (_let_6)) (MACRO_SR_EQ_INTRO :args (_let_6 SB_DEFAULT SBA_FIXPOINT))) (MACRO_SR_EQ_INTRO (AND_INTRO _let_27 _let_26 _let_25 _let_24 _let_23 _let_22 _let_21) :args ((= tptp.tpp (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.pp X) Y) (not (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.ec Z))) (or (not (@ _let_1 X)) (not (@ _let_1 Y))))))))) SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_29 (AND_INTRO (EQ_RESOLVE (EQ_RESOLVE (ASSUME :args (_let_5)) (MACRO_SR_EQ_INTRO :args (_let_5 SB_DEFAULT SBA_FIXPOINT))) (MACRO_SR_EQ_INTRO (AND_INTRO _let_28 _let_27 _let_26 _let_25 _let_24 _let_23 _let_22 _let_21) :args ((= tptp.ntpp (lambda ((X tptp.reg) (Y tptp.reg)) (and (@ (@ tptp.pp X) Y) (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.ec Z))) (or (not (@ _let_1 X)) (not (@ _let_1 Y)))))))) SB_DEFAULT SBA_FIXPOINT))) _let_28 _let_27 _let_26 _let_25 _let_24 _let_23 _let_22 _let_21))) (let ((_let_30 (=>))) (let ((_let_31 (or))) (let ((_let_32 (@ tptp.c tptp.paris))) (let ((_let_33 (THEORY_PREPROCESS :args ((= (@ _let_32 tptp.spain) _let_15))))) (let ((_let_34 (not))) (let ((_let_35 (THEORY_PREPROCESS :args ((= (@ _let_32 tptp.catalunya) _let_16))))) (let ((_let_36 (_let_19))) (let ((_let_37 (tptp.c tptp.spain tptp.paris))) (let ((_let_38 (not _let_15))) (let ((_let_39 (or _let_38 _let_37))) (let ((_let_40 (forall ((X tptp.reg) (Y tptp.reg)) (or (not (@ (@ tptp.c X) Y)) (@ (@ tptp.c Y) X))))) (let ((_let_41 (EQ_RESOLVE (ASSUME :args (_let_14)) (MACRO_SR_EQ_INTRO :args (_let_14 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_42 (@ tptp.c tptp.spain))) (let ((_let_43 (THEORY_PREPROCESS :args ((= (@ _let_42 tptp.paris) _let_37))))) (let ((_let_44 (_let_40))) (let ((_let_45 (REFL :args _let_44))) (let ((_let_46 (forall ((Z tptp.reg)) (or (not (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 Z)) (@ _let_1 tptp.spain))))) (not (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 Z)) (@ _let_1 tptp.france))))))))) (let ((_let_47 (not _let_46))) (let ((_let_48 (tptp.c tptp.spain tptp.france))) (let ((_let_49 (not _let_48))) (let ((_let_50 (forall ((Z tptp.reg)) (or (not (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 Z)) (@ _let_1 tptp.spain))))) (not (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 Z)) (@ _let_1 tptp.paris))))))))) (let ((_let_51 (not _let_50))) (let ((_let_52 (not _let_37))) (let ((_let_53 (or _let_52 _let_51 _let_49 _let_47))) (let ((_let_54 (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 tptp.paris)) (not (forall ((Z tptp.reg)) (or (not (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 Z)) (@ _let_1 Z))))) (not (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 Z)) (@ _let_1 tptp.paris)))))))) (not (@ _let_1 tptp.france)) (not (forall ((Z tptp.reg)) (or (not (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 Z)) (@ _let_1 Z))))) (not (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 Z)) (@ _let_1 tptp.france))))))))))))) (let ((_let_55 (0))) (let ((_let_56 (EQ_RESOLVE (ASSUME :args (_let_2)) (MACRO_SR_EQ_INTRO _let_29 :args (_let_2 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_57 (THEORY_PREPROCESS :args ((= (@ _let_42 tptp.france) _let_48))))) (let ((_let_58 (_let_51))) (let ((_let_59 (CONG _let_43 :args _let_34))) (let ((_let_60 (_let_54))) (let ((_let_61 (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32)) (@ _let_1 tptp.paris)))))) (let ((_let_62 (not _let_61))) (let ((_let_63 (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32)) (@ _let_1 tptp.spain)))))) (let ((_let_64 (not _let_63))) (let ((_let_65 (or _let_64 _let_62))) (let ((_let_66 (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32)) (@ _let_1 tptp.france)))))) (let ((_let_67 (not _let_66))) (let ((_let_68 (or _let_64 _let_67))) (let ((_let_69 (tptp.c SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_119 tptp.paris))) (let ((_let_70 (tptp.c SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_119 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32))) (let ((_let_71 (not _let_70))) (let ((_let_72 (or _let_71 _let_69))) (let ((_let_73 (tptp.c SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_119 tptp.france))) (let ((_let_74 (or _let_71 _let_73))) (let ((_let_75 (not _let_69))) (let ((_let_76 (or _let_75 _let_73))) (let ((_let_77 (REFL :args (_let_65)))) (let ((_let_78 (and))) (let ((_let_79 (_let_46))) (let ((_let_80 (EQ_RESOLVE (ASSUME :args (_let_3)) (TRANS (MACRO_SR_EQ_INTRO _let_29 :args (_let_3 SB_DEFAULT SBA_FIXPOINT)) (CONG _let_57 (REFL :args _let_79) :args _let_78))))) (let ((_let_81 (AND_ELIM _let_80 :args _let_20))) (let ((_let_82 (@ tptp.c SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_119))) (let ((_let_83 (THEORY_PREPROCESS :args ((= (@ _let_82 tptp.paris) _let_69))))) (let ((_let_84 (CONG (THEORY_PREPROCESS :args ((= (@ _let_82 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32) _let_70))) :args _let_34))) (let ((_let_85 (_let_61))) (let ((_let_86 (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_119 QUANTIFIERS_INST_FMF_FMC_EXH))) (let ((_let_87 (THEORY_PREPROCESS :args ((= (@ _let_82 tptp.france) _let_73))))) (let ((_let_88 (_let_67))) (let ((_let_89 (forall ((Z tptp.reg)) (let ((_let_1 (@ tptp.c Z))) (or (not (@ _let_1 tptp.paris)) (@ _let_1 tptp.france)))))) (let ((_let_90 (_let_89))) (let ((_let_91 (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_53)) :args ((or _let_52 _let_49 _let_47 _let_51 (not _let_53)))) (AND_ELIM _let_80 :args _let_55) _let_81 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE (ASSUME :args _let_58)) :args _let_58)) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_51) _let_50))) (REFL :args ((not _let_65))) :args _let_31)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_76)) :args ((or _let_73 _let_75 (not _let_76)))) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (INSTANTIATE (ASSUME :args _let_90) :args _let_86) :args _let_90) (CONG (REFL :args _let_90) (CONG (CONG _let_83 :args _let_34) _let_87 :args _let_31) :args _let_30))) (AND_ELIM _let_56 :args _let_20) :args (_let_76 false _let_89)) (REORDERING (CNF_OR_POS :args (_let_72)) :args ((or _let_71 _let_69 (not _let_72)))) (CNF_OR_NEG :args (_let_74 1)) (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_74 0)) (CONG (REFL :args (_let_74)) (MACRO_SR_PRED_INTRO :args ((= (not _let_71) _let_70))) :args _let_31)) :args ((or _let_70 _let_74))) (EQ_RESOLVE (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (SKOLEMIZE (ASSUME :args _let_88)) :args _let_88) (CONG (REFL :args _let_88) (CONG (CONG _let_84 _let_87 :args _let_31) :args _let_34) :args _let_30))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_67) _let_66))) (REFL :args ((not _let_74))) :args _let_31)) (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (INSTANTIATE (ASSUME :args _let_85) :args _let_86) :args _let_85) (CONG (REFL :args _let_85) (CONG _let_84 _let_83 :args _let_31) :args _let_30))) (REORDERING (CNF_OR_POS :args (_let_68)) :args ((or _let_64 _let_67 (not _let_68)))) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_79) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_32 QUANTIFIERS_INST_FMF_FMC_EXH)) :args _let_79)) _let_81 :args (_let_68 false _let_46)) (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_65 1)) (CONG _let_77 (MACRO_SR_PRED_INTRO :args ((= (not _let_62) _let_61))) :args _let_31)) :args ((or _let_61 _let_65))) (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_65 0)) (CONG _let_77 (MACRO_SR_PRED_INTRO :args ((= (not _let_64) _let_63))) :args _let_31)) :args ((or _let_63 _let_65))) :args (_let_65 false _let_76 false _let_69 true _let_73 false _let_70 true _let_74 false _let_72 true _let_66 false _let_68 false _let_61 false _let_63)) :args (_let_50 false _let_65)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (INSTANTIATE (ASSUME :args _let_60) :args (tptp.spain QUANTIFIERS_INST_FMF_FMC_EXH)) :args _let_60) (CONG (REFL :args _let_60) (CONG _let_59 (REFL :args _let_58) (CONG _let_57 :args _let_34) (REFL :args (_let_47)) :args _let_31) :args _let_30))) (AND_ELIM _let_56 :args _let_55) :args (_let_53 false _let_54)) :args (_let_52 false _let_48 false _let_46 false _let_50 false _let_53)))) (let ((_let_92 (tptp.c tptp.catalunya tptp.paris))) (let ((_let_93 (not _let_92))) (let ((_let_94 (or _let_93 _let_16))) (let ((_let_95 (CONG (THEORY_PREPROCESS :args ((= (@ (@ tptp.c tptp.catalunya) tptp.paris) _let_92))) :args _let_34))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_18)) :args ((or _let_17 _let_15 (not _let_18)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_94)) :args ((or _let_93 _let_16 (not _let_94)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (NOT_AND (EQ_RESOLVE (ASSUME :args (_let_1)) (TRANS (MACRO_SR_EQ_INTRO _let_29 :args (_let_1 SB_DEFAULT SBA_FIXPOINT)) (CONG (CONG _let_95 _let_59 :args _let_78) :args _let_34)))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_93) _let_92))) (MACRO_SR_PRED_INTRO :args ((= (not _let_52) _let_37))) :args _let_31)) :args ((or _let_37 _let_92))) _let_91 :args (_let_92 true _let_37)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (INSTANTIATE _let_41 :args (tptp.catalunya tptp.paris QUANTIFIERS_INST_FMF_FMC_EXH)) :args _let_44) (CONG _let_45 (CONG _let_95 _let_35 :args _let_31) :args _let_30))) _let_41 :args (_let_94 false _let_40)) :args (_let_16 false _let_92 false _let_94)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_39)) :args ((or _let_37 _let_38 (not _let_39)))) _let_91 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (INSTANTIATE _let_41 :args (tptp.paris tptp.spain QUANTIFIERS_INST_FMF_FMC_EXH)) :args _let_44) (CONG _let_45 (CONG (CONG _let_33 :args _let_34) _let_43 :args _let_31) :args _let_30))) _let_41 :args (_let_39 false _let_40)) :args (_let_38 true _let_37 false _let_39)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (INSTANTIATE (ASSUME :args _let_36) :args (tptp.paris QUANTIFIERS_INST_FMF_FMC_EXH)) :args _let_36) (CONG (REFL :args _let_36) (CONG (CONG _let_35 :args _let_34) _let_33 :args _let_31) :args _let_30))) (AND_ELIM (EQ_RESOLVE (ASSUME :args (_let_4)) (MACRO_SR_EQ_INTRO _let_29 :args (_let_4 SB_DEFAULT SBA_FIXPOINT))) :args _let_20) :args (_let_18 false _let_19)) :args (false false _let_16 true _let_15 false _let_18)) :args ((forall ((X tptp.reg)) (@ (@ tptp.c X) X)) _let_14 _let_13 _let_12 _let_11 _let_10 _let_9 _let_8 _let_7 _let_6 _let_5 _let_4 _let_3 _let_2 _let_1 true))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
% 36.98/37.20  )
% 36.98/37.20  % SZS output end Proof for GEG002^1
% 36.98/37.20  % cvc5---1.0.5 exiting
% 36.98/37.20  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------